This article was downloaded by: On: *15 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Experimental Nanoscience

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t716100757

Size control of magnetite nanoparticles by organic solvent-free chemical coprecipitation at room temperature

Tomohiro Iwasaki^a; Naoya Mizutani^a; Satoru Watano^a; Takeshi Yanagida^b; Tomoji Kawai^b ^a Department of Chemical Engineering, Osaka Prefecture University, Osaka, Japan ^b Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan

Online publication date: 05 July 2010

To cite this Article Iwasaki, Tomohiro , Mizutani, Naoya , Watano, Satoru , Yanagida, Takeshi and Kawai, Tomoji(2010) 'Size control of magnetite nanoparticles by organic solvent-free chemical coprecipitation at room temperature', Journal of Experimental Nanoscience, 5: 3, 251 - 262

To link to this Article: DOI: 10.1080/17458080903490731 URL: http://dx.doi.org/10.1080/17458080903490731

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Size control of magnetite nanoparticles by organic solvent-free chemical coprecipitation at room temperature

Tomohiro Iwasaki^{a*}, Naoya Mizutani^a, Satoru Watano^a, Takeshi Yanagida^b and Tomoji Kawai^b

^aDepartment of Chemical Engineering, Osaka Prefecture University, Osaka, Japan; ^bInstitute of Scientific and Industrial Research, Osaka University, Osaka, Japan

(Received 22 May 2009; final version received 16 November 2009)

This study provides a facile single-step coprecipitation method for preparing size-controlled high crystalline magnetite nanoparticles in water system without using any organic solvents. In this method, an iron ions solution and an alkaline solution are simply mixed at room temperature without using any additional heating treatment. The size of obtained magnetite nanoparticles greatly depended on the coexisting anionic species in the starting solution because the coexisting anions greatly influenced both the formation of crystal nuclei and the dispersion stabilisation of formed precipitates. The size control of magnetite nanoparticles having high crystallinity and ferromagnetic property could be successfully achieved by using the effects of coexisting anions. For synthesising finer magnetite nanoparticles, the presence of lactate ion in the starting solution was effective, and coarser ones could be synthesised under higher ferrous/ferric ions molar ratios.

Keywords: Fe₃O₄; magnetic nanoparticle; coprecipitation; anion; iron complex

1. Introduction

Magnetite (Fe₃O₄) is one of the most useful industrial materials because of its excellent magnetic properties, and Fe₃O₄ nanoparticles have been used in various industrial products, such as recording media, pigments, copying toners, etc. The efficiency of such industrial products greatly depends on the size of Fe₃O₄ nanoparticles. Thus, the particle size has been controlled to be suitable for their applications by means of various preparation techniques using chemical reactions under dry and wet conditions. In biomedical applications, particularly, precise control of the particle size is required. For example, for drug delivery system Lin et al. [1] and Zhang and Misra [2] synthesised the Fe₃O₄ nanoparticles of about 20 nm and 5 nm using a liquid phase coprecipitation method and a thermal decomposition method, respectively. Wang et al. [3] applied the Fe₃O₄ nanoparticles of about 20 nm synthesised by an electrochemical deposition method for cancer therapy.

Many preparation methods of Fe₃O₄ nanoparticles developed so far have several significant problems. In many cases, the synthesis process is complicated and

ISSN 1745-8080 print/ISSN 1745-8099 online © 2010 Taylor & Francis DOI: 10.1080/17458080903490731

http://www.informaworld.com

^{*}Corresponding author. Email: iwasaki@chemeng.osakafu-u.ac.jp

environment-unfriendly organic solvents are often used, resulting in an increase in both production costs and environmental impact. However, coprecipitation techniques in water systems without using any organic solvents are promising as a useful preparation method because the synthesis process can be simplified and the environmental impact is relatively low. In widely used coprecipitation methods, hydroxides of ferrous and ferric ions, ferrous hydroxide (Fe(OH)₂) and goethite (α -FeOOH), are coprecipitated as precursors in an alkaline solution at relatively low temperature. The molar ratio of ferrous ion to ferric ion is 0.5, corresponding to the chemical stoichiometric ratio of Fe_3O_4 formation reaction [4]. Then the solid phase reaction between the hydroxides results in the formation of Fe_3O_4 . Recent reports reveal that the size of Fe_3O_4 nanoparticles thus formed greatly depends on the concentration of ferrous and ferric ions [5] and the reaction temperature [6]. These results imply that the synthesis conditions influence greatly not only the Fe_3O_4 formation reaction but also the formation of Fe(OH)₂ and α -FeOOH precipitates. Accordingly, in order to control the size of Fe_3O_4 nanoparticles, the formation process of Fe(OH)₂ and α -FeOOH precipitates should be also controlled. Kandori et al. [7,8] reported that the formation and crystal growth of α -FeOOH colloids was influenced by the anionic species existing together with ferric ions in the solution. Therefore, the coexisting anions must play an important role in the formation of Fe₃O₄ nanoparticles, and the function of coexisting anions should be clarified for controlling the particle size. To our knowledge, however, there is no research focusing on the effect of coexisting anions in the synthesis of Fe₃O₄ nanoparticles using the coprecipitation method.

Coprecipitation methods for preparing Fe₃O₄ nanoparticles also have a serious problem. The formed Fe₃O₄ nanoparticles tend to have relatively low crystallinity, leading to poor magnetic property, when the coprecipitation is carried out at low temperature. Thus, a heating process, such as annealing and hydrothermal treatment is often employed to improve the crystallinity [6,9]. Unfortunately, this complicates the synthesis process and spoils the advantages of this method. In addition, it is very difficult to prepare ultrafine Fe₃O₄ nanoparticles with a size of 10 nm or less because the Fe(OH)₂ and α -FeOOH precipitates and the Fe₃O₄ nanoparticles tend to aggregate owing to heating even though their size before heating is less than 10 nm [6]. This reduces controllable range of the particle size. Accordingly, the heating process is unsuitable for the size control of Fe₃O₄ nanoparticles [10].

In this study, for preparing size-controlled high crystalline Fe_3O_4 nanoparticles without any heating treatment, a facile single-step coprecipitation process using effects of coexisting anions has been developed. In this method, an iron ions solution and an alkaline solution are simply mixed at room temperature. It is expected that the effects can contribute not only to control the particle size but also to improve the crystallinity because the reaction rate of Fe_3O_4 formation may vary depending on the coexisting anionic species. Influence of the kind and amount of coexisting anions on the size and crystallinity of obtained Fe_3O_4 nanoparticles was examined. The role of coexisting anions in the formation process of Fe_3O_4 nanoparticles is discussed.

2. Experimental

2.1. Synthesis of Fe_3O_4 nanoparticles

All chemicals used in the experiments were of analytical reagent grade and were used without further purification. In all the experiments, ferric chloride hexahydrate (FeCl₃ · 6H₂O) was used as the ferric ion source. As the ferrous ion source, ferrous sulphate heptahydrate (FeSO₄ · 7H₂O) and ferrous chloride tetrahydrate (FeCl₂ · 4H₂O), which are often used in many studies on the synthesis of Fe₃O₄ nanoparticles, were used. In addition, ferrous lactate trihydrate (Fe(C₃H₅O₃)₂ · 3H₂O) was also used because ferric ion has a tendency to form a relatively stable complex with lactate ion C₃H₅O₃⁻ unlike sulphate ion SO₄²⁻ and chloride ion Cl⁻ [11]. FeCl₃ · 6H₂O of 2 mmol and 1 mmol of one of the above-mentioned ferrous ion salts were dissolved in 40 mL of deionised and deoxygenated water. Sodium hydroxide (NaOH) solution of 20 mL of 1.0 kmol/m³ was dropped into the solution rate of NaOH solution was kept at constant of 3.0 mL/min for forming the precipitates homogeneously. When the NaOH solution was added to the iron salts solution, Fe(OH)₂ and *α*-FeOOH were coprecipitated and then Fe₃O₄ was formed by the solid phase reaction between them, according to the following chemical reactions.

$$Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2}$$

$$Fe^{3+} + 3OH^{-} \rightarrow Fe(OH)_{3}$$

$$Fe(OH)_{3} \rightarrow \alpha \text{-FeOOH} + H_{2}O$$

$$Fe(OH)_{2} + 2\alpha \text{-FeOOH} \rightarrow Fe_{3}O_{4} + 2H_{2}O.$$

After addition of the NaOH solution, the pH value of the suspension was higher than 12. These operations were carried out under argon atmosphere to prevent the oxidation of ferrous ion. The resulting precipitate was immediately washed with deionised water and decanted after centrifugation at centrifugal acceleration of 1500 G. The washing operation was repeated thrice, and then the sample was dried at 30°C under vacuum for 5 h.

In order to investigate the role of anion $(SO_4^{2-}, Cl^- \text{ and } C_3H_5O_3^-)$ during the formation of Fe₃O₄ nanoparticles, 1 mmol of sodium sulphate (Na₂SO₄), 2 mmol of sodium chloride (NaCl) or 2 mmol of sodium lactate (NaC₃H₅O₃) was added to the water before the iron salts were dissolved. Furthermore, for increasing the reaction rate, the molar ratio of ferrous ions to ferric ions was increased as 1.0 and 2.0 in the FeSO₄–FeCl₃ system without adding any additives [12]. The experimental conditions are summarised in Table 1.

Run #	Ferrous ions source	Additive	Ferrous/ferric ions molar ratio	
1	FeSO ₄	_	0.5	
2	FeCl ₂	_	0.5	
3	$Fe(C_3H_5O_3)_2$	_	0.5	
4	FeSO ₄	NaCl	0.5	
5	FeSO ₄	NaC ₃ H ₅ O ₃	0.5	
6	FeCl ₂	Na_2SO_4	0.5	
7	FeCl ₂	NaC ₃ H ₅ O ₃	0.5	
8	$\overline{\text{FeSO}_4}$	_	1.0	
9	FeSO ₄	_	2.0	

Table 1. Experimental conditions.

2.2. Characterisation

The morphology of prepared samples was observed with a field emission scanning electron microscope (FE-SEM; JSM-6700F, JEOL). The hydrodynamic size distribution (number basis) was measured by dynamic light scattering (DLS; DLS-7000, Otsuka Electronics) and the median diameter was determined. The powder X-ray diffraction (XRD) pattern was measured with Cu-K α radiation ranging from $2\theta = 10^{\circ}$ to 80° at a scanning rate of 1.0°/min using a Rigaku RINT-1500 powder X-ray diffractometer. The average crystallite size was calculated from the full-width at half-maximum (FWHM) of the Fe₃O₄ (311) diffraction peak at $2\theta \approx 35.5^{\circ}$ using Scherrer's formula. The lattice constant was also determined from several diffraction angles showing high intensity peak. The magnetic property (magnetisation-magnetic field hysteretic cycle) was analysed using a superconducting quantum interference device (SQUID) magnetometer (model MPMS, Quantum Design) at room temperature in the rage of magnetic field between -10 and 10 kOe. In order to investigate the dispersion stability of precipitates in water containing the anions, the zeta potential of Fe_3O_4 nanoparticles (synthesised under the conditions of Run #2) in the solution containing a proper amount of Na₂SO₄, NaCl or $NaC_{3}H_{5}O_{3}$ was evaluated with a zeta potential analyser (Zetasizer Nano ZS, Malvern Instruments). Furthermore, for evaluating the relative stability of ferric complex with the anions, the UV analysis [13] for the 0.2 mM FeCl₃ solutions containing 0.2 mM of either Na_2SO_4 or $NaC_3H_5O_3$ was carried out at room temperature using a spectrophotometer (Ubest V-530, JASCO).

Figure 1. SEM images of the samples of Run #1 (a), #2 (b) and #3 (c).

3. Results and discussion

Figures 1 and 2 show, respectively, SEM images and XRD patterns of the samples obtained under the conditions of Run #1-#3. As can be seen in Figures 1(a) and 2(a), when FeSO₄ was used as the ferrous ion source, the formation reaction of Fe₃O₄ was uncompleted and unreacted α -FeOOH (acicular-shaped particles) were contained in the sample, since the reaction is slow at room temperature. When either FeCl₂ or Fe(C₃H₅O₃)₂ was used instead of FeSO₄, however, the reaction rate increased relatively and the single phase of Fe₃O₄ formed. Figures 3 and 4 show, respectively, SEM images and XRD patterns of the samples of Run #4-#7. In the cases of addition of NaCl (Run #4) and NaC₃H₅O₃ (Run #5) in the FeSO₄-FeCl₃ system, similar results to Run #2 and #3 were obtained, respectively. This reveals that Cl⁻ and C₃H₅O₃⁻ can promote the solid phase reaction between α -FeOOH and Fe(OH)₂ even though FeSO₄ is used, resulting in rapid formation of single Fe₃O₄ phase. The size of Fe₃O₄ nanoparticles prepared in the presence of SO₄²⁻ (i.e. in Run #4-#6) was relatively large compared with the cases without SO₄²⁻ (Runs #2 and #3). Thus, SO₄²⁻ was found to have the effect to increase the particle size. On the other hand, Cl⁻ and C₃H₅O₃⁻ effectively contributed to size reduction of the Fe₃O₄

Figure 2. XRD patterns of the samples of Run #1 (a), #2 (b) and #3 (c).

Figure 3. SEM images of the samples of Run #4 (a), #5 (b), #6 (c) and #7 (d).

nanoparticles, as shown in Figures 1(b), (c) and 3(d). The results suggest that the coexisting anionic species can be the operational factor to control the particle size.

Subsequently, in order to prepare coarser Fe₃O₄ nanoparticles, the amount of FeSO₄ in the starting solution was increased without adding any additives. Figures 5 and 6 show, respectively, SEM images and XRD patterns of the samples obtained under the conditions of Runs #8 and #9. When the ferrous/ferric ions molar ratio was higher than the stoichiometric ratio (=0.5), the reaction rate increased and the single Fe₃O₄ phase formed. The particle size increased with increasing molar ratio because of the effect of SO₄²⁻. At higher ferrous/ferric ions molar ratios, Fe(OH)₂ remains in the suspension containing SO₄²⁻. In this case, a small amount of oxygen contained in the solution oxidises a part of Fe(OH)₂ at room temperature, resulting in the formation of α -FeOOH via a green rust (Fe₄^{II}Fe₂^{III}(OH)₁₂SO₄) [14,15] according to the following reactions [16].

$$5 \text{Fe}(\text{OH})_2 + \text{Fe}^{2+} + \text{SO}_4^{2-} + (1/2)\text{O}_2 + \text{H}_2\text{O} \rightarrow \text{Fe}_4^{\text{II}}\text{Fe}_2^{\text{III}}(\text{OH})_{12}\text{SO}_4$$

 $\text{Fe}_4^{\text{II}}\text{Fe}_2^{\text{III}}(\text{OH})_{12}\text{SO}_4 + (3/4)\text{O}_2 \rightarrow 5\text{Fe}\text{OOH} + \text{Fe}^{2+} + \text{SO}_4^{2-} + (7/2)\text{H}_2\text{O}_4$

The green rust functioned as a buffer and promoted the coprecipitation of $Fe(OH)_2$ and α -FeOOH, leading to the growth of Fe₃O₄ nanoparticles.

Table 2 gives properties of the samples of Run #2-#9. The median size almost agreed with the average crystallite size. This means that the obtained Fe₃O₄ nanoparticles had a

Figure 4. XRD patterns of the samples of Run #4 (a), #5 (b), #6 (c) and #7 (d).

single-crystal structure, i.e. high crystallinity. In XRD patterns of the samples of Run #2-#9 shown in Figures 2, 4 and 6, the diffraction intensity peaks indicating formation of other compounds were not observed. In addition, the lattice constant was between 8.386 and 8.404 Å and close to the standard value of Fe₃O₄ (=8.396 Å) compared with that of maghemite (=8.345 Å). These results also suggest that the samples had a single Fe₃O₄ phase regardless of the experimental conditions. The samples of Run #2-#9 exhibited a ferromagnetic behaviour with a relatively high saturation magnetisation. However, the value decreased with the particle size and was lower than that of the corresponding bulk (about 90 emu/g) due to their smaller size [17]. The coercivity also decreased with the particle size, and the samples with a size of less than approximately 10 nm had very low coercivity, indicating superparamagnetism.

Figure 5. SEM images of the samples of Run #8 (a) and #9 (b).

It is well known that ferrous and ferric ions in iron salts solutions form iron hydroxo-complex ions and/or ferrosic complex ions and in alkaline solutions iron hydroxides with different crystalline structures, depending on environmental conditions precipitate [18–20]. If anions in the solution directly take part in the formation reaction of iron hydroxides as reactive species, part of hydroxide ions OH^- in the iron hydroxides may be replaced by the anions, resulting in formation of specific iron hydroxides depending on the anionic species. This leads to formation of iron oxides with completely different properties. However, many studies demonstrated that uniform Fe₃O₄ was obtained from the iron salts solutions containing SO_4^{2-} and/or Cl⁻. Inoue and Hatta [21] also reported that no anions in the solution replaced OH⁻ in the formed ferric hydroxides although the crystalline structure depended strongly on the anionic species. In our experimental results, single Fe₃O₄ phase was obtained regardless of combination of the anionic species as mentioned earlier. Consequently, it is considered that lactate ion $C_3H_5O_3^-$ also does not directly take part in the formation reaction of Fe₃O₄. This means that the formation process proceeds according to the same chemical reaction regardless of the anionic species.

From the results of Run #2-#5, the size of Fe₃O₄ nanoparticles obtained in the presence of C₃H₅O₃⁻ was smaller than those in the presence of Cl⁻. When SO₄²⁻ coexisted in the solution, the effect of C₃H₅O₃⁻ was reduced. Furthermore, when FeCl₂ was used as the ferrous ion source, the Fe₃O₄ nanoparticles obtained in the presence of SO₄²⁻ (Run #6) and C₃H₅O₃⁻ (Run #7) became coarser and finer, respectively, as compared with that without adding any additives (Run #2). The result of Run #4 almost agreed with that of Run #6. In addition, the experiments under several combinations of ferrous ion sources and sodium salts excluding those shown in Table 1 were carried out. For example, when Fe(C₃H₅O₃)₂ was used and either Na₂SO₄ or NaCl was added, the obtained results (data not shown) were almost the same as those of Run #5 and #7, respectively. The results reveal that the particle size greatly depends on the coexisting anionic species regardless of its source. Consequently, it was confirmed that the size of Fe₃O₄ nanoparticles could be controlled by a combination of the coexisting anions.

The values of zeta potential of Fe_3O_4 nanoparticles in the Na_2SO_4 , NaCl and $NaC_3H_5O_3$ solutions were -19.2, -21.8 and -31.2 mV, respectively. $C_3H_5O_3^-$ was found to be effective to decrease the surface potential of Fe_3O_4 nanoparticles. As can be seen in

Figure 6. XRD patterns of the samples of Run #8 (a) and #9.

Table 2, when anions reducing the zeta potential coexisted in the starting solution, the obtained Fe_3O_4 nanoparticles had a tendency to become finer. Therefore, it was clarified that the decrease in the surface potential by anions, i.e. the increase in the dispersion stability of Fe_3O_4 nanoparticles, contributed effectively to the decrease in the particle size. This suggests that the effect may also be shown for the iron hydroxides precipitates. Figure 7 shows the UV spectra of ferric ion solutions containing SO_4^{2-} , CI^- and $C_3H_5O_3^-$. UV spectrum of the ferric ion solution containing both SO_4^{2-} and CI^- had a strong

Run #	Median size (nm)	Average crystallite size (nm)	Lattice constant (Å)	Saturation magnetisation (emu/g)	Coercivity (Oe)
2	9.9	10.9	8.402	47.1	3
3	4.9	4.9	8.386	59.4	6
4	15.2	11.4	8.397	56.5	4
5	11.5	7.6	8.390	56.3	3
6	15.0	9.7	8.390	51.8	3
7	6.6	7.4	8.404	62.2	5
8	16.8	14.8	8.388	63.4	12
9	24.6	25.3	8.392	67.9	65

Table 2. Properties of samples.

Figure 7. UV spectra of the solutions of (a) $FeCl_3$, (b) $FeCl_3 + Na_2SO_4$ and (c) $FeCl_3 + NaC_3H_5O_3$.

absorption peak at a wavelength of approximately 290 nm, which was similar to that of the FeCl₃ solution without adding any sodium salts. When $C_3H_5O_3^-$ coexisted with $C\Gamma$, however, the UV spectrum greatly changed and the strong absorption peak was observed at a wavelength of 347 nm. It was confirmed that formation of the ferric complex with $C\Gamma^-$ is hardly influenced by SO_4^{2-} and that $C_3H_5O_3^-$ forms the complex more easily with ferric ion than $C\Gamma^-$. This result implies that among these anions $C_3H_5O_3^-$ forms the most stable ferric complex and ferric complex with SO_4^{2-} has the lowest stability. Accordingly, the formation mechanism of Fe₃O₄ nanoparticles in this system containing $C_3H_5O_3^-$ may be as follows. In an alkaline solution, ferric ions tend to form relatively stable complex with $C_3H_5O_3^-$ and OH^- , leading to a decrease in the ionic strength of the solution. This promotes the formation of ferric hydroxides, and then the formation of crystal nuclei occurs frequently comparing with the particle growth, resulting in the formation

of finer precipitates. Furthermore, the surface potential of formed Fe₃O₄ nanoparticles decreases by adsorption of $C_3H_5O_3^-$ onto their surface. This results in promotion of the dispersion stabilisation in the suspension, leading to inhibition of the particle growth caused by aggregation. When SO_4^{2-} coexists, the precipitates tend to aggregate each other due to decreasing dispersion stability, resulting in the particle growth. In the presence of Cl⁻, the intermediate phenomenon is observed.

4. Conclusions

A facile single-step coprecipitation method has been developed in order to prepare size-controlled high crystalline Fe₃O₄ nanoparticles in water system at room temperature. In the coprecipitation process, the particle size varied greatly depending on the stability of iron complex with the coexisting anions in the starting solution and on the surface potential of anions-adsorbed precipitates, which controlled both the reaction rate of formation of the precipitates and the particle growth. It was concluded that the effects of coexisting anions on the formation of finer Fe₃O₄ nanoparticles increased in the order, $C_3H_5O_3^-$, CI^- , SO_4^{2-} , corresponding to the stability of iron complex and the surface potential. Therefore, it was confirmed that the size control of Fe₃O₄ nanoparticles could be easily carried out by this method and that the proper selection of coexisting anions according to a desired size was essential. For example, in the synthesis of finer Fe₃O₄ nanoparticles, the use of Fe(C₃H₅O₃)₂ as the ferrous iron source was effective; on the other hand, coarser ones could be synthesised under higher ferrous/ferric ions molar ratios. The particle size can be controlled more precisely by adjusting both combination and concentration of the coexisting anions.

References

- B.L. Lin, X.D. Shen, and S. Cui, Application of nanosized Fe₃O₄ in anticancer drug carriers with target-orientation and sustained-release properties, Biomed. Mater. 2 (2007), pp. 132–134.
- [2] J. Zhang and R.D.K. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response, Acta Biomater. 3 (2007), pp. 838–850.
- [3] X. Wang, R. Zhang, C. Wu, Y. Dai, M. Song, S. Gutmann, F. Gao, G. Lv, J. Li, X. Li, Z. Guan, D. Fu, and B. Chen, *The application of Fe₃O₄ nanoparticles in cancer research: A new strategy to inhibit drug resistance*, J. Biomed. Mater. Res. A 80 (2007), pp. 852–860.
- [4] S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, M. Jiang, C. Hu, and L. Xu, Synthesis of magnetite nanorods and porous hematite nanorods, Solid State Commun. 129 (2004), pp. 485–490.
- [5] I. Martínez-Mera, M.E. Espinosa-Pesqueira, R. Pérez-Hernández, and J. Arenas-Alatorre, Synthesis of magnetite (Fe₃O₄) nanoparticles without surfactants at room temperature, Mater. Lett. 61 (2007), pp. 4447–4451.
- [6] J.H. Wu, S.P. Ko, H.L. Liu, S. Kim, J.S. Ju, and Y.K. Kim, Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties, Mater. Lett. 61 (2007), pp. 3124–3129.
- [7] K. Kandori, M. Fukuoka, and T. Ishikawa, *Effects of citrate ions on the formation of ferric oxide hydroxide particles*, J. Mater. Sci. 26 (1991), pp. 3313–3319.
- [8] K. Kandori, S. Uchida, S. Kataoka, and T. Ishikawa, *Effects of silicate and phosphate ions on the formation of ferric oxide hydroxide particles*, J. Mater. Sci. 27 (1992), pp. 719–728.

- [9] J.H. Wu, S.P. Ko, H.L. Liu, M.H. Jung, J.H. Lee, J.S. Ju, and Y.K. Kim, Sub 5 nm Fe₃O₄ nanocrystals via coprecipitation method, Colloids Surf. A 313–314 (2008), pp. 268–272.
- [10] T. Iwasaki, K. Kosaka, N. Mizutani, S. Watano, T. Yanagida, H. Tanaka, and T. Kawai, *Mechanochemical preparation of magnetite nanoparticles by coprecipitation*, Mater. Lett. 62 (2008), pp. 4155–4157.
- [11] M.A. Ali, F. Yasui, S. Matsugo, and T. Konishi, *The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction*, Free Radical Res. 32 (2000), pp. 429–438.
- [12] N. Mizutani, T. Iwasaki, S. Watano, T. Yanagida, H. Tanaka, and T. Kawai, *Effect of ferrous/* ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles, Bull. Mater. Sci. 31 (2008), pp. 713–717.
- [13] T. Sugimoto and Y. Wang, Mechanism of the shape and structure control of monodispersed α -Fe₂O₃ particles by sulfate ions, J. Colloid Interf. Sci. 207 (1998), pp. 137–149.
- [14] J.-M.R. Génin, G. Bourrié, F. Trolard, M. Abdelmoula, A. Jaffrezic, P. Refait, V. Maitre, B. Humbert, and A. Herbillon, *Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)-Fe(III) green rusts: Occurrences of the mineral in hydromorphic soils*, Environ. Sci. Technol. 32 (1998), pp. 1058–1068.
- [15] Ph. Refait, J.-B. Memet, C. Bon, R. Sabot, and J.-M.R. Génin, Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel, Corros. Sci. 45 (2003), pp. 833–845.
- [16] T. Kuroki, A. Matsumoto, K. Nakatsuka, and N. Tsuchiya, *Influences of Ni²⁺, Co²⁺, Cu²⁺ and Pd²⁺ ions on hydrothermal synthesis of magnetite*, J. Min. Mater. Proc. Inst. Jpn. 119 (2003), pp. 484–488.
- [17] J. Lee, T. Isobe, and M. Senna, *Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation*, Colloids Surf. A 109 (1996), pp. 121–127.
- [18] J.-P. Jolivet, Metal Oxide Chemistry and Synthesis: From Solution to Solid State, John Wiley & Sons, Chichester, 2000.
- [19] R.M. Cornell and U. Schwertmann, *The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses*, Wiley-VCH, Weinheim, 2003.
- [20] M. Kiyama, Conditions for the formation of Fe₃O₄ by the air oxidation of Fe(OH)₂ suspension, Bull. Chem. Soc. Jpn. 47 (1974), pp. 1646–1650.
- [21] A. Inoue and T. Hatta, Co-precipitation synthesis of Schwertmannite and its analogues with different anion species, focusing on understanding of the role of anions in the formation of FeOOH minerals, J. Clay Sci. Soc. Jpn. 45 (2006), pp. 250–265.